
TRAINING ON NVIDIA GH200
OPTIMIZING FOR ARM
ARCHITECTURE.

HCMC AI MEETUP #1 - MENLO RESEARCH

STUBBORN STRAWBERRIES

SHADEFORM

Bao Huynh Thai
Student@UIT

Phat Nguyen Thuan
Student@UIT

Thai Hoang Minh
Student@UIT

Long Le Bao
Student@UIT

Quoc-Bao Nguyen
Staff@Zalo

Stubborn Strawberries

We are a research team from UIT-VNUHCM and Zalo.
Our research areas are: Text to 3D, GPU Workload.

Table of
Contents

NVIDIA GH2001
LGM2
Problem & solution3

4
5

GH200 vs A100 - Compare

Conclusion

About
NVIDIA GH20001

NVIDIA GH200
GH200 = Grace CPU + Hopper GPU
NVLink-C2C for a unified CPU+GPU
memory model.
900 GB/s bandwidth — 7× faster than
PCIe Gen5.
HBM3/HBM3e for high memory
bandwidth and capacity.
Optimized for AI, HPC, and generative
AI workloads.
Supports NVIDIA AI Enterprise, HPC

SDK, and Omniverse™.

LGM
Large Multi-View Gaussian Model for
High-Resolution 3D Content Creation.

02

LGM
LGM generates high-

resolution 3D models from
text or images in ~5s.
Uses multi-view Gaussian

features and asymmetric

U-Net for rendering.
Fixes blurry output and

high compute in feed-
forward models.
Efficient multi-view fusion
enables faster, sharper 3D
generation.

Pipeline

Architecture

Scan here

Problem
Problems when train and infer LGM03

Problems for AArch64-
based machines

xFormers is crucial for training LGM and
modern AI models.
Building xFormers built on Flash-Attn 2.x.x

from source is often infeasible:
Uses precompiled CUDA binaries for x86_64
architectures.
Installing xFormers via pip often resulted in

long compilation times.

Problems for AArch64-
based machines

Attempts to fix these
issues

Use docker

Cross-compilation

Build from source

Use Docker
QEMU emulation --> install x64_x86 version into Docker

*Note: Emulation with QEMU is slower than native,
only: testing or building.

Use Docker

Use Docker

We are building on a ARM architecture
(GH200) without a compatible GPU → the
compiler doesn't know what to set
CUTE_ARCH_MMA to. We were trying to
set TORCH_CUDA_ARCH_LIST = 9.0 (for
ARM) but it didn’t work

Cross-compilation
xFormers was compiled for A100 with
TORCH_CUDA_ARCH_LIST=9.0.
Used QEMU emulation and multi-arch Docker to run
x86_64 in the container.
Enables porting to A100 via containerized x86
environment.
Downside: Requires a virtualized runtime, reducing
performance and not fully utilizing GH200's speed.

First attempt to build from
source

Building from source from xFormers repo.

Uses Flash-Attention 2.x.x and Torch 2.6.0

Issue Encountered:

First attempt to build from
source

Reason for build fails:

Limited support for “sm_90a” - a variant of the Hopper

architecture.

Flash-Attn 2.x.x and torch 2.6.0 only supports up to

“sm_90” (NVIDIA H100 (Hopper GPU)).

Second attempt to
build from source

Latest update from xFormers adds support for local attention
on the Flash3 backend (H100).

Second attempt to build from
source

Flash Attention 3 is specifically built for Hopper GPUs.
It’s 1.5-2.0x faster than FlashAttention-2, i.e., 75% utilization
of H100 theoretical max FLOPS

Second attempt to build from
source

Torch2.7.0 now supports “sm_90a”!

GH200 vs A100

Speed Power Draw Time Cost

We trained and inferred LGM at the same settings on
A100 and GH200 to compare the following metrics

Speed
Compare SM Clock Speed (Streaming Multiprocessor

Clock):

SM Clock: main speed of CUDA cores.

Handles tensor ops like GEMM, convolution, attention.

Key for FP16, BF16, and Tensor Core workloads.

Comparing SM Clock: reveals true training compute

speed.

Speed

Speed

Power

Power

Time

A100: 22:40:00(20/5) --> 08:40:00 (21/5)

GH200: 08:50:00(20/5) --> 13:20:00 (20/5)

GH200 A100

Price for rent in 1h
($/h)

1.5$
1.25 - 1.5$

(Depends on the
provider)

Training time
(h)

4,5h 10h

Total price ($) 6.75$ 12.5 - 15$

Cost *rent cost

Why use ARM CPUs instead of Intel or AMD?

Faster CPU <> GPU transfer: NVLink-C2C @ 900 GB/s, much

faster than PCIe → reduces bottlenecks when offloading

during training/inference.

Less offloading needed: GH200 has slightly more GPU

VRAM → less data needs to go through CPU, boosting

speed.

AI-tuned CPU: Grace CPU is optimized for ML workloads,

better at feeding data and coordinating tasks than general-

purpose Intel/AMD CPUs.

Is GH200 suitable for training, inference, or both? Why?

GH200 is great for both training and inference, but best for

large-scale training.

Combines Grace ARM CPU + H100 GPU via NVLink-C2C (900

GB/s) and unified memory (up to 480 GB).

Training:

Fast CPU-GPU memory sharing, no bottlenecks.

H100 excels with FP8/TF32 Tensor Cores.

Inference:

Unified memory handles large batches well.

But may be overkill for small-scale inference.

Why is the default kernel page size 64KB (on ARM), not 4KB?

Higher eff iciency: 64KB pages mean fewer OS-

managed pages → better TLB hit rate, lower latency.

Ideal for AI/HPC: Large tensors benefit from less

fragmentation and overhead.

ARM optimized: Many ARM kernels use

CONFIG_ARM64_64K_PAGES=y.

Trade-off: May waste memory for small al locations,

but negligible in AI workloads.

Bao Huynh Thai
Student@UIT

Phat Nguyen Thuan
Student@UIT

Thai Hoang Minh
Student@UIT

Long Le Bao
Student@UIT

Quoc-Bao Nguyen
Staff@Zalo

Contact us

{23520105, 23521146, 23521414, 23520877}@gm.uit.edu.vn

baonq5@vng.com.vn

Thank YouThank You

